MyxoEE-3 treatments

Environment Casitone Agar Populations Cycles Ancestors
(# populations per treatment)
Publications
abiotic treatments CTT - HA 1% 1.5% 28 40 A+S+ (12); A+S- (8); A-S+ (8) 3, 5, 7, 8, 9, 10
CTT - SA 1% 0.5% 28 40 A+S+ (12); A+S- (8); A-S+ (8) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
0.1% CTT - HA 0.1% 1.5% 8 40 A+S+ (8) 2
0.1% CTT - SA 0.1% 0.5% 8 40 A+S+ (8) 2
CTT - HA - LV 1% 0.5%
low volume
8 40 A+S+ (8)
CTT - SA - LV 1% 0.5%
low volume
8 40 A+S+ (8)
predation treatments B. subtilis - CTT-HA 1% 1.5% 8 40 A+S+ (8) 10
E. coli - CTT-HA 1% 1.5% 8 40 A+S+ (8) 10
B. subtilis - CTT-SA 1% 0.5% 8 40 A+S+ (8) 1, 3
E. coli - CTT-SA 1% 0.5% 8 40 A+S+ (8) 1, 3
B. subtilis - TPM-HA 0% 1.5% 8 24 A+S+ (8) 10
E. coli - TPM-HA 0% 1.5% 8 24 A+S+ (8) 10
B. subtilis - TPM-SA 0% 0.5% 8 24 A+S+ (8) 1, 3
E. coli - TPM-SA 0% 0.5% 8 24 A+S+ (8) 1, 3
1 - Velicer, G. and Y.-T. N. Yu. 2003. Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature. 425: 75–78. https://doi.org/10.1038/nature01908
2 - Zee, P. C., H. Mendes-Soares, Y.-T. N. Yu, H. Keller, S. A. Kraemer, S. Ossowski, K. Schneeberger and G. J. Velicer. 2014. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait. Evolution. 68: 2701-2708. https://doi.org/10.1111/evo.12467
3 - Rendueles, O., P. C. Zee, I. Dinkelacker, M. Amherd, S. Wielgoss and G. J. Velicer. 2015. Rapid and widespread de novo evolution of kin discrimination. Proceedings of the National Academy of Sciences USA. 112: 9076-9081. https://doi.org/10.1073/pnas.1502251112
4 - Zee, P. C. and G. J. Velicer. 2017. Parallel emergence of negative epistasis across experimental lineages. Evolution. 71: 1088-1095. https://doi.org/10.1111/evo.13190
5 - Rendueles, O., and G. J. Velicer. 2017. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. The ISME Journal. 11: 555–568. https://doi.org/10.1038/ismej.2016.115
6 - Zee, P. C., J. Liu and G. J. Velicer. 2017. Pervasive, yet idiosyncratic, epistatic pleiotropy during adaptation in a behaviourally complex microbe. Journal of Evolutionary Biology. 30: 257–269. https://doi.org/10.1111/jeb.12999
7 - Nair, R. R., F. Fiegna and G. J. Velicer. 2018. Indirect evolution of social fitness inequalities and facultative social exploitation. Proceedings of the Royal Society B. 285: 20180054. https://doi.org/10.1098/rspb.2018.0054
8 - Rendueles, O. and G. J. Velicer. 2020. Hidden paths to endless forms most wonderful: Complexity of bacterial motility shapes diversification of latent phenotypes. BMC Evolutionary Biology. 20: 145. https://doi.org/10.1186/s12862-020-01707-3
9 - Freund, L., M. Vasse and G. J. Velicer. 2021. Hidden paths to endless forms most wonderful: Parasite-blind diversification of host quality. Proceedings of the Royal Society B. 288: 20210456 https://doi.org/10.1098/rspb.2021.0456
10 - La Fortezza, M., O. Rendueles, H. Keller and G. J. Velicer. 2022. Hidden paths to endless forms most wonderful: Ecology latently shapes evolution of multicellular development in predatory bacteria. Communications Biology. 5: 977. https://doi.org/10.1038/s42003-022-03912-w

In two environments CTT-HA (hard agar) and CTT-SA (soft agar), populations were initiated from three motility-genotype ancestors: A+S+ ancestors functional at both “A-motility” and “S-motility” and ancestors functional at only one of the two motility systems (A+S- and A-S+). In all other environments, populations were initiated only from A+S+ ancestors.

For each motility-genotype ancestor, two ancestor variants differing by a single mutation were used, one rifampicin-sensitive and one rifampicin-resistant. Within each treatment, half of the independently evolving replicate populations were initiated from one ancestral variant and half from the other.